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Module 2: Analysis of Stress                     
 
2.2.1    PRINCIPAL STRESS IN THREE DIMENSIONS 

For the three-dimensional case, for principal stresses it is required that three planes of zero 
shear stress exist, that these planes are mutually perpendicular, and that on these planes the 
normal stresses have maximum or minimum values.  As discussed earlier, these normal 

stresses are referred to as principal stresses, usually denoted by s1, s2 and s3.  The largest 

stress is represented by s1 and the smallest by s3. 

Again considering an oblique plane x¢ , the normal stress acting on this plane is given by the 
Equation (2.25). 

x¢s  = sx l2 + sy m2 + sz n2 + 2 (txy lm + tyz  mn  + txz ln)                                    (2.27) 

The problem here is to determine the extreme or stationary values of x¢s .  To accomplish 

this, we examine the variation of x¢s  relative to the direction cosines. As l, m and n are not 

independent, but connected by l2 + m2 + n2 = 1, only l and m may be regarded as 
independent variables.  

Thus,  
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Differentiating Equation (2.27), in terms of the quantities in Equations (2.22a), (2.22b), 
(2.22c), we obtain 
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From n2 = 1 - l2 - m2, we have 
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Introducing the above into Equation (2.27b), the following relationship between the 
components of T and n is determined 
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n
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T zyx ==                                                      (2.27c) 

These proportionalities indicate that the stress resultant must be parallel to the unit normal 
and therefore contains no shear component.  Therefore from Equations (2.22a), (2.22b), 

(2.22c) we can write as below denoting the principal stress by Ps  

Tx = sP l    Ty = sP m     Tz = sP n                         (2.27d) 

These expressions together with Equations (2.22a), (2.22b),  (2.22c) lead to  

(sx - sP)l + txy m + txz n = 0 

txy l+(sy - sP) m + tyz n = 0                                                   (2.28) 

txz l + tyz m + (sz - sP) n = 0 

A non-trivial solution for the direction cosines requires that the characteristic determinant 
should vanish.  
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Expanding (2.29) leads to 032
2

1
3 =-+- III PPP sss                       (2.30) 

where I1 = sx + sy + sz                                  (2.30a) 

I2 = sx sy + sy sz + szsx - t 2
xy - t 2

yz -t 2
xz                                             (2.30b) 

I3 = 

zyzxz

yzyxy

xzxyx

stt
tst
tts

                                   (2.30c)             

The three roots of Equation (2.30) are the principal stresses, corresponding to which are 
three sets of direction cosines that establish the relationship of the principal planes to the 
origin of the non-principal axes. 
 
2.2.2    STRESS INVARIANTS  

Invariants mean those quantities that are unexchangeable and do not vary under different 
conditions.  In the context of stress tensor, invariants are such quantities that do not change 
with rotation of axes or which remain unaffected under transformation, from one set of axes 
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to another.  Therefore, the combination of stresses at a point that do not change with the 
orientation of co-ordinate axes is called stress-invariants. Hence, from Equation  (2.30) 

sx + sy + sz = I1 = First invariant of stress 

sxsy + sysz + szsx - t 2
xy  - t 2

yz  - t 2
zx  = I2 = Second invariant of stress 

sxsysz - sxt 2
yz  - syt 2

xz
 - szt 2

xy  + 2txy tyz txz = I3 = Third invariant of stress 

 
2.2.3 EQUILIBRIUM OF A DIFFERENTIAL ELEMENT 

 

 

 

Figure 2.11(a) Stress components acting on a plane element 

 

When a body is in equilibrium, any isolated part of the body is acted upon by an equilibrium 
set of forces.  The small element with unit thickness shown in Figure 2.11(a) represents part 
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of a body and therefore must be in equilibrium if the entire body is to be in equilibrium.  It is 
to be noted that the components of stress generally vary from point to point in a stressed 
body. These variations are governed by the conditions of equilibrium of statics. Fulfillment 
of these conditions establishes certain relationships, known as the differential equations of 
equilibrium. These involve the derivatives of the stress components. 

Assume that sx, sy, txy, tyx are functions of X, Y but do not vary throughout the thickness  
(are independent of Z) and that the other stress components are zero.  

Also assume that the X and Y components of the body forces per unit volume, Fx and Fy, 
are independent of Z, and that the Z component of the body force Fz = 0.  As the element is 
very small, the stress components may be considered to be distributed uniformly over each 
face. 

Now, taking moments of force about the lower left corner and equating to zero, 
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Neglecting the higher terms involving Dx, and Dy and simplifying, the above expression is 
reduced to              

txy Dx Dy = tyx Dx Dy  

or       txy = tyx 

In a like manner, it may be shown that 

tyz = tzy  and txz = tzx 

Now, from the equilibrium of forces in x-direction, we obtain  
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Simplifying, we get 
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A similar expression is written to describe the equilibrium of y forces. The x and y equations 
yield the following differential equations of equilibrium.  
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                           (2.31) 

The differential equations of equilibrium for the case of three-dimensional stress may be 
generalized from the above expressions as follows [Figure 2.11(b)]. 
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Figure 2.11(b) Stress components acting on a three dimensional element 
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2.2.4    OCTAHEDRAL STRESSES 

A plane which is equally inclined to the three axes of reference, is called the octahedral plane 

and its direction cosines are 
3

1
,

3

1
,

3

1
±±± . The normal and shearing stresses acting 

on this plane are called the octahedral normal stress and octahedral shearing stress 

respectively.  In the Figure 2.12,  X, Y, Z axes are parallel to the principal axes and the 

octahedral planes are defined with respect to the principal axes and not with reference to an 

arbitrary frame of reference. 

 

                                 (a)                                                                              (b) 

Figure 2.12 Octahedral plane and Octahedral stresses 

 

Now, denoting the direction cosines of the plane ABC by l, m,  and n, the equations (2.22a), 

(2.22b) and (2.22c) with 0,1 === xzxyx ttss  etc. reduce to 

Tx = 1s  l,  Ty = s2 m and Tz = s3 n                           (2.33) 

The resultant stress on the oblique plane is thus 

2222
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22
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2 tssss +=++= nmlT   

\ T 2 = s 2 + t 2                              (2.34) 
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The normal stress on this plane is given by 

s = s1 l2 + s2 m2 + s3 n2                                          (2.35) 

and the corresponding shear stress is 

( ) ( ) ( )[ ]2

1
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21 lnnmml sssssst -+-+-=                                    (2.36) 

The direction cosines of the octahedral plane are: 

l = ± 
3

1  ,       m = ± 
3

1
,   n = ± 

3

1   

Substituting in (2.34), (2.35), (2.36), we get 

Resultant stress T = )(
3
1 2

3
2
2

2
1 sss ++                                       (2.37)  

Normal stress = s = 
3
1

 (s1+s2+s3)                             (2.38) 

Shear stress = t = 2
13
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Also, t = )(6)(2
3

1
313221

2
321 sssssssss ++-++                                                      (2.40) 

         t = 2
2

1 62
3
1

II -                 (2.41) 

 
 
 
2.2.5    MOHR'S STRESS CIRCLE 

A graphical means of representing the stress relationships was discovered by  
Culmann (1866) and developed in detail by Mohr (1882), after whom the graphical method 
is now named. 
 
2.2.6    MOHR CIRCLES FOR TWO DIMENSIONAL STRESS SYSTEMS 

Biaxial Compression (Figure 2.13a) 

The biaxial stresses are represented by a circle that plots in positive (s, t) space, passing 
through stress points s1, s2 on the t = 0 axis.  The centre of the circle is located on the  
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t = 0 axis at stress point ( )212
1 ss + .  The radius of the circle has the magnitude  

( )212
1 ss - , which is equal to tmax. 

 

 

 
Figure 2.13 Simple Biaxial stress systems: (a) compression,  

       (b) tension/compression, (c) pure shear 

 (c)

 tzy

 tzy

.
tzy

s s2 s1

- +.
 tyz

-

+t

(a)

s1

s1

 s2  s2 .
+t

-

-

 s2 s1

+
s

 (b)

s1

s1

 s2  s2 . -

+
t

s1 s2 s
+

2q

-



Module2/Lesson2 
 

 9 
Applied Elasticity for Engineers                                                          T.G.Sitharam & L.GovindaRaju 

Biaxial Compression/Tension (Figure 2.13b) 

Here the stress circle extends into both positive and negative s space.  The centre of the 

circle is located on the t = 0 axis at stress point ( )212
1 ss +  and has radius ( )212

1 ss - .  

This is also the maximum value of shear stress, which occurs in a direction at 45o to the s1 
direction.  The normal stress is zero in directions ±q to the direction of s1, where 

cos2q = - 
21

21

ss
ss

-
+

 

Biaxial Pure Shear (Figure 2.13c) 

Here the circle has a radius equal to tzy, which is equal in magnitude to ,yzt  but opposite in 

sign.  The centre of circle is at s = 0, t = 0.  The principal stresses s1 , s2 are equal in 
magnitude, but opposite in sign, and are equal in magnitude to tzy.  The directions of s1, s2 
are at 45o to the directions of yzzy tt ,  

 

2.2.7 CONSTRUCTION OF MOHR’S CIRCLE FOR TWO- 
                DIMENSIONAL STRESS 

Sign Convention 

For the purposes of constructing and reading values of stress from Mohr’s circle, the sign 
convention for shear stress is as follows.  

If the shearing stresses on opposite faces of an element would produce shearing forces that 
result in a clockwise couple, these stresses are regarded as "positive".  

Procedure for Obtaining Mohr’s Circle  

1) Establish a rectangular co-ordinate system, indicating +t and +s.  Both stress scales 
must be identical.  

2) Locate the centre C of the circle on the horizontal axis a distance ( )YX ss +
2
1

 from the 

origin as shown in the figure above. 

3) Locate point A by co-ordinates xyx ts -,  

4) Locate the point B by co-ordinates xyy ts ,  

5) Draw a circle with centre C and of radius equal to CA. 

6) Draw a line AB through C. 

 

 



Module2/Lesson2 
 

 10 
Applied Elasticity for Engineers                                                          T.G.Sitharam & L.GovindaRaju 

 

 

 

 

Figure 2.14 Construction of Mohr’s circle 

An angle of 2q on the circle corresponds to an angle of q on the element.  The state of stress 
associated with the original x and y planes corresponds to points A and B on the circle 
respectively.  Points lying on the diameter other than AB, such as A¢  and B¢ , define state of 
stress with respect to any other set of x¢  and y¢  planes rotated relative to the original set 

through an angle q. 
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It is clear from the figure that the points A1 and B1 on the circle locate the principal stresses 

and provide their magnitudes as defined by Equations (2.14) and (2.15), while D and E 
represent the maximum shearing stresses.  The maximum value of shear stress (regardless of 

algebraic sign) will be denoted by tmax and are given by  

tmax = ± ( )212
1 ss -   = ± 2

2

2 xy
yx t

ss
+÷÷

ø

ö
çç
è

æ -
                                 (2.42) 

Mohr’s circle shows that the planes of maximum shear are always located at 45o from planes 
of principal stress. 
  
2.2.8   MOHR’S CIRCLE FOR THREE-DIMENSIONAL STATE OF   
                  STRESS 

When the magnitudes and direction cosines of the principal stresses are given, then the 
stresses on any oblique plane may be ascertained through the application of Equations (2.33) 
and  (2.34).  This may also be accomplished by means of Mohr’s circle method, in which the 
equations are represented by three circles of stress.  

Consider an element as shown in the Figure 2.15, resulting from the cutting of a small cube 
by an oblique plane.  

 

(a) 
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                                                (b) 

Figure 2.15  Mohr's circle for Three Dimensional State of Stress 

 

The element is subjected to principal stresses s1, s2 and s3 represented as coordinate axes 

with the origin at P.  It is required to determine the normal and shear stresses acting at point 

Q on the slant face (plane abcd).  This plane is oriented so as to be tangent at Q to a quadrant 

of a spherical surface inscribed within a cubic element as shown.  It is to be noted that PQ, 

running from the origin of the principal axis system to point Q, is the line of intersection of 

the shaded planes (Figure 2.15 (a)).  The inclination of plane PA2QB3 relative to the s1 axis 

is given by the angle q (measured in the s1, s3 plane), and that of plane PA3QB1, by the 

angle F (measured in the s1 and s2 plane).  Circular arcs A1B1A2 and A1B3A3 are located on 

the cube faces.  It is clear that angles q and F unambiguously define the orientation of PQ 
with respect to the principal axes. 
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Procedure to determine Normal Stress (s) and Shear Stress (t) 

1) Establish a Cartesian co-ordinate system, indicating +s and +t as shown.  Lay off the 

principal stresses along the s-axis, with s1 > s2 > s3 (algebraically). 

2) Draw three Mohr semicircles centered at C1, C2 and C3 with diameters A1A2, A2A3  

and A1A3. 

3) At point C1, draw line C1 B1 at angle 2f; at C3, draw C3 B3 at angle 2q.  These lines cut 

circles C1 and C3 at B1 and B3 respectively. 

4) By trial and error, draw arcs through points A3 and B1 and through A2 and B3, with their 

centres on the s-axis.  The intersection of these arcs locates point Q on the s, t plane. 

In connection with the construction of Mohr’s circle the following points are of  
particular interest: 

a) Point Q will be located within the shaded area or along the circumference of circles C1, 

C2 or C3, for all combinations of q and f. 

b) For particular case q = f = 0, Q coincides with A1. 

c) When q = 450, f = 0, the shearing stress is maximum, located as the highest point  
on circle C3 (2q = 900).  The value of the maximum shearing stress is therefore 

( )31max 2
1 sst -=  acting on the planes bisecting the planes of maximum and minimum 

principal stresses. 

d) When q = f = 450, line PQ makes equal angles with the principal axes.  The oblique 
plane is, in this case, an octahedral plane, and the stresses along on the plane, the 
octahedral stresses.  

 
2.2.9    GENERAL EQUATIONS IN CYLINDRICAL CO-ORDINATES 

While discussing the problems with circular boundaries, it is more convenient to use the 

cylindrical co-ordinates, r, q, z. In the case of plane-stress or plane-strain problems, we have 

0== zzr qtt and the other stress components are functions of r and q only. Hence the 

cylindrical co-ordinates reduce to polar co-ordinates in this case. In general, polar  
co-ordinates are used advantageously where a degree of axial symmetry exists. Examples 
include a cylinder, a disk, a curved beam, and a large thin plate containing a circular hole.  
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2.2.10   EQUILIBRIUM EQUATIONS IN POLAR CO-ORDINATES:  

             (TWO-DIMENSIONAL STATE OF STRESS) 

 

 

Figure 2.16 Stresses acting on an element 

The polar coordinate system (r, q) and the cartesian system (x, y) are related by the following 
expressions: 
 x =  rcosq,            r2 = x2+y2 

 y = rsinq,       ÷
ø
ö

ç
è
æ= -

x
y1tanq                                                                                     (2.43) 

Consider the state of stress on an infinitesimal element abcd of unit thickness described by 
the polar coordinates as shown in the Figure 2.16.  The body forces denoted by Fr and Fq are 
directed along r and q directions respectively. 

Resolving the forces in the r-direction, we have for equilibrium, SFr = 0, 



Module2/Lesson2 
 

 15 
Applied Elasticity for Engineers                                                          T.G.Sitharam & L.GovindaRaju 

( )

0
2

cos
2

cos
2

sin

2
sin

=÷
ø
ö

ç
è
æ

¶
¶

++-

÷
ø
ö

ç
è
æ

¶
¶

+-+-+÷
ø
ö

ç
è
æ

¶
¶

++´-

qq
q

t
tqtq

q
q

s
s

q
sq

s
sqs

q
qq

q
qq

d
drd

d
dr

d

drdF
d

drddrrdr
r

rd

r
rr

r
r

rr

 

Since dq is very small,  
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Neglecting higher order terms and simplifying, we get 
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Similarly resolving all the forces in the q - direction at right angles to r - direction, we have 
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On simplification, we get 
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Dividing throughout by rdq dr, we get 
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In the absence of body forces, the equilibrium equations can be represented as: 
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